
Predictive Mitigation of Timing Channels
in Interactive Systems

Danfeng Zhang
zhangdf@cs.cornell.edu

Aslan Askarov
aslan@cs.cornell.edu

Andrew C. Myers
andru@cs.cornell.edu

Department of Computer Science
Cornell University
Ithaca, NY 14853

Abstract
Timing channels remain a difficult and important problem for in-
formation security. Recent work introduced predictive mitigation, a
new way to mitigating leakage through timing channels; this mech-
anism works by predicting timing from past behavior, and then en-
forcing the predictions. This paper generalizes predictive mitiga-
tion to a larger and important class of systems: systems that receive
input requests from multiple clients and deliver responses. The new
insight is that timing predictions may be a function of any public
information, rather than being a function simply of output events.
Based on this insight, a more general mechanism and theory of
predictive mitigation becomes possible. The result is that bounds
on timing leakage can be tightened, achieving asymptotically log-
arithmic leakage under reasonable assumptions. By applying it to
web applications, the generalized predictive mitigation mechanism
is shown to be effective in practice.

Categories and Subject Descriptors
C.2.0 [Computer-Communication Networks]: General—Secu-
rity and protection

General Terms
Security

Keywords
Timing channels, mitigation, interactive systems, information flow

1. Introduction
The time at which a computing system performs some observ-

able action such as sending a network packet can in principle en-
code an unbounded amount of information about what is happening
inside the system, creating a timing channel [1]. An adversary able
to accurately measure this time may learn confidential information
from this side channel (e.g., [2, 3, 4, 5]); an adversary able to
influence this time may additionally use it as a covert channel to
communicate confidential information (e.g., [6, 7, 8]).
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Though the recent work cited above demonstrates the threat of
timing channels, controlling them without compromising function-
ality is typically considered to be extremely challenging or even
infeasible [9, 10, 11]. Recent work on timing channels has focused
on quantitatively bounding what can be learned from timing chan-
nels rather than on blocking them entirely (e.g., [12, 13, 14])

Recent work by Askarov et al. introduced a new mechanism
called predictive mitigation for bounding information leakage via
timing channels [14]. Unlike work focusing on preventing leakage
of keys from cryptographic operations (such as [12, 13]), predictive
mitigation applies to any computing system, making few assump-
tions about the nature of the computation being performed. How-
ever, as we argue, the original predictive mitigation mechanism is
impractical for many real-world systems where timing channels
are of concern—especially networked servers such as web appli-
cations. Therefore, this paper generalizes predictive mitigation to
take advantage of more knowledge about the system whose timing
channels are being mitigated, significantly improving the tradeoff
between security and performance.

Contributions. The contributions of this work are both theoret-
ical and practical. On the theoretical side, the theory of predictive
mitigation is extended in several ways:
• Inputs. The model of the mitigated system is extended to ac-

count for inputs to the system, so output timing can be predicted
from public (that is, nonconfidential) attributes of input such as re-
quest time.
• Threads. In [14], the system being mitigated is a black box.

Here the system is modeled more concretely as containing multi-
ple threads which communicate with the outside over different out-
put channels. This more detailed modeling enables tighter leakage
bounds.
• Composition. In general, a system employing predictive mit-

igation may be composed of several communicating components,
each individually mitigated. The theory of composing predictive
mitigation is developed.

This new theory of predictive mitigation has been put into prac-
tice as in an implementation of predictive mitigation for web ap-
plications. For example, we implement a standardized server-side
wrapper that can mitigate timing leaks from any web application.

An important contribution of this paper is an empirical evalua-
tion of how predictive mitigation performs when applied to real ap-
plications with different characteristics. We examine its impact on
latency, throughput, and maximum timing leakage of wrapped web
applications. The results from this implementation suggest that the
generalized predictive mitigation mechanism appears to be practi-
cal and offers a significant improvement on the original predictive
mitigation method.
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Figure 1: Predictive mitigation

The rest of the paper is structured as follows. Section 2 intro-
duces the extended form of predictive mitigation in the context of
the prior work. Section 3 presents different ways to construct pre-
dictive mitigators depending on the concurrency model and on what
information is considered public. Section 4 analyzes information
leakage under various mitigation schemes and assumptions about
applications. Section 5 develops formal results on the composi-
tion of predictive mitigators. Experiments with applying predictive
mitigation to real applications are presented in 6. Related work is
discussed in Section 7; the paper concludes in Section 8.

2. Predictive mitigation
Timing channels can be divided into internal and external timing

channels [15]. Predictive timing mitigation is a general method for
limiting leakage through external channels: those in which the tim-
ing measurement is taken external to the system. Because measure-
ment is external, methods that control internal timing channels by
preventing effective timing measurement within the system (e.g.,
[16, 17, 18, 19]) cannot be applied.

Unlike timing mitigation methods that add random delays (e.g.,
[20, 16]), predictive mitigation bounds the amount of information
that leaks through the timing channel, by delaying events according
to a schedule that is predicted in advance.

2.1 Background
In the original predictive mitigation work, the system is modeled

abstractly as an event source connected to a timing mitigator, as
depicted in Figure 1. The timing of events produced by the event
source is in general influenced by confidential information. Fur-
ther, adversary may be able to affect how confidential information
influences timing, enabling timing to be used as a covert channel.
For example, the adversary might install software onto the event
source to modulate the timing of generated events [7].

Events from the event source are delayed by the timing mitiga-
tor to reduce the bandwidth of the timing channel. The adversary
is assumed to be able to observe the timing of events leaving the
mitigator,1 but can affect the mitigator only via the input stream of
source events. Generating fake events does not help; the adversary
is assumed to be able to identify them.

At any point, the mitigator has a schedule describing when events
are supposed to be released. The schedule is a sequence of predic-
tions, each associated with a future point in time. As long as events
arrive according to (or ahead of) the schedule, leakage must be low
because the number of possible system behaviors observable by the
adversary is small.

The event source might fail to behave according to the schedule,
in which case the adversary may learn information. The mitiga-
tor responds to the misprediction by selecting a new schedule in a
way that ensures that total leakage through the timing channel is
1The adversary may also be able to partly observe the contents of
events leaving the mitigator, but this is a storage channel [1], the
control of which is orthogonal to the goals of this work.
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Figure 2: Predictive mitigation of an interactive system

bounded. The period during which the schedule correctly predicts
behavior is called an epoch. Schedules are chosen in such a way
that the number of epochs grows slowly with time.

For example, consider the following simple “fast doubling” mit-
igation scheme described by Askarov et al.: Initially, the mitigator
has a schedule of predictions at evenly spaced intervals. If the event
source fails to deliver events quickly enough, the resulting mispre-
diction causes the mitigator to generate a new schedule in which
the interval between predictions is doubled.

We can bound the amount of information that leaks through the
adversary’s observations through a combinatorial analysis of the
number of possible distinct observations the adversary can make.
An observation consists of a sequence of times at which events
are released by the mitigator. Because events are released in ac-
cordance with schedules, the number of possible observations is
limited; therefore, the information-theoretic entropy of the timing
channel is bounded. This in turn bounds the capacity of the timing
channel. In total time T , there can be no more than log(T + 1)
epochs,2 each of which leaks no more than log(T + 1) + 1 bits
of information. Therefore, this simple scheme releases no more
than (1 + ε) log2 T bits of information, where ε is small for large
T [14]. As this bound shows, it is possible to ensure leakage is
asymptotically sublinear over time.

Note that this argument is all about the capacity of the timing
channel, without any assumptions about how efficiently secrets are
encoded into this channel. The bound applies even if the adversary
is perfectly encoding secrets into event timing. But if the adversary
does not have this level of control, the bound is likely to be quite
conservative.

2.2 Generalizing predictive mitigation
The prior work on predictive mitigation assumes very little about

the event source, which means that it can be applied to a wide range
of systems. Predictive mitigation can address even difficult low-
level timing channels such as those created by hardware contention
at the level of the processor or the bus, as long as the mitigator
is able to delay externally visible events to precisely the time pre-
dicted by the schedule.

However, the very generality of predictive mitigation can make
the leakage bounds conservative, and performance of the system
is then hurt because the mitigator excessively delays the release of
events. By refining the system model, we can make more accurate
predictions and also bound timing leakage more accurately. The
result is a better tradeoff between security and performance.

Timing channels in network-based services are particularly of
interest for timing channel mitigation. These services are interac-
tive systems that accept input requests from a variety of clients and
send back responses. Figure 2 illustrates how we extend predictive
mitigation for such a system.

Here, the abstract event source used by the prior work is replaced

2All logarithms here use base 2.



by a more concrete interactive system that accepts input messages
on multiple input channels and delivers output messages to corre-
sponding output channels. Output messages are passed through the
timing mitigator, as before, and released by the timing mitigator in
accordance with the prediction for that message. If a message ar-
rives early, the mitigator delays it until the predicted time. If it does
not arrive in time—a misprediction has happened—the mitigation
starts a new epoch and makes a new, more conservative prediction.

This scheme significantly generalizes the original predictive mit-
igation scheme. First, the time to produce each event is predicted
separately, rather than requiring the mitigator to predict the entire
schedule in advance—which is rather difficult for an interactive
system. Second, the prediction may be computed using any public
information in the system. This public information may be any-
thing deemed public (the “non-secrets” in the diagram), possibly
including some information about input requests. For example, the
mitigator may use the time at which a given input request arrives to
predict the time at which the corresponding output will be available
for release. The model also permits the content of input requests to
be partly public. Each request has an application-defined request
type capturing what information about the request is public. If no
information in the request is public, all requests have the same re-
quest type.

To see why this generalizes the original predictive mitigation
scheme, consider what happens if the prior history of mitigator pre-
dictions is the only information considered public when predicting
the time of output events. In this case, all predictions within an
epoch can be generated at the start of the epoch, yielding a com-
pletely determined schedule for the epoch. By contrast, our gener-
alized predictive mitigation can make use of information that was
not known at the start of the epoch, such as input time. Therefore,
predictions can be made dynamically within an epoch.

2.3 Leakage measures
Two ways to measure information leakage have recently been

popular. The information-theoretic measure of mutual information
has a long history of use; it is advocated, for example, by Den-
ning [21], and has been used for the estimation of covert channel
capacity, including timing channel capacity, in much prior work (e.g.,
[22, 23, 24]). Recently, min-entropy leakage has become a popu-
lar measure, motivated by the observation that two systems with
the same leakage according to mutual information may have very
different security properties [25].

Prior work on timing channel mitigation has used one or both of
these measures. Fortunately, the style of analysis used here and in
prior work on predictive mitigation is sufficiently conservative that
it bounds both the mutual information and the min-entropy mea-
sures of leakage.

The information-theoretic (Shannon) entropy of a finite distribu-
tion X over its n possible values is written as H(X). It achieves
its maximal value of log(n) bits when all n possible values have
equal probability. Suppose that O is the distribution over n possi-
ble timing observations by the adversary, and S is the distribution
over possible secrets that the adversary wants to learn. The mu-
tual information between O and S, written I(O;S), is equal to
H(O) −H(O|S), where H(O|S) is the conditional entropy of O
on S—how much entropy remains in O once S is fixed. In our
context, the conditional entropy describes how effectively the ad-
versary encodes the secrets S into the observations O. But since
conditional entropy is always positive, the mutual information be-
tween O and S is at mostH(O), or log(n).

Smith argues [25] that the min-entropy of a distribution is a bet-
ter basis for assessing the vulnerability introduced by quantitative

leakage because it describes the chance that an adversary is able
to guess the value of the secret in one try. The min-entropy of a
distribution is defined as H∞(O) = − log V (O) where V (O) is
the worst-case vulnerability of O to being guessed: the maximum
over the probabilities of all values inO. Let us write P (o|s) for the
probability of observation o given secrets s. Köpf and Smith [13]
show that the min-entropy channel capacity from S to O is equal
to log

∑
o∈O maxs∈S P (o|s). This capacity is maximized when

P (o|s) = 1 at all o, in which case it is equal to logn. Therefore
logn is a conservative bound on this measure of leakage as well.

3. Predictions for interactive systems
The system model described in Section 2.2 permits a great deal

of flexibility in constructing predictions. We now begin to explore
the possibilities.

Throughout the rest of the paper we assume that the mitigator
has an internal state, denoted by St. In the simplest schemes, the
state only records the number of epochs N , that is, St = N . But
more complex internal state is possible, as discussed in Section 4.2.

3.1 Inputs, outputs, and idling
For simplicity, we assume that inputs to and outputs from the in-

teractive system correspond one-to-one: each input has one output
and vice versa. If inputs can cause multiple output events, this can
be modeled by introducing a schedule for delivering the multiple
outputs as a batch.

Many services generate output events only as a response to some
external input. In the absence of inputs, such systems are idle and
produce no output. If the predictor cannot take this into account
when generating predictions, the failure to generate output pro-
duces gratuitous mispredictions. With generalized predictive miti-
gation, these mispredictions can be avoided.

For example, consider applying the original predictive mitiga-
tion scheme to a service that reliably generates results in 10ms. If
the service is idle for an hour, the series of ensuing mispredictions
will inflate the interval between predicted outputs to more than an
hour, slowing the underlying service by more than five orders of
magnitude. Clearly this is not acceptable.

Consider inputs arriving at times inp1, inp2, . . . inpn, . . . , where
each inpi is the time of input i. We assume that the mitigator has
some public state St, and that this state always includes the index
of the current mitigation epoch, denoted by N . Let the prediction
for events for state St be described by a function p(St), where p
gives a bound on how long it is expected to take to compute an
answer to a request in state St.

Whenever the structure of the mitigator state is understood, we
use more concrete notation. For example, in the simple mitigator
we have St = N , so we we write p(N) for p(St). Simple fast
doubling has the prediction function p(N) = 2N−1. For more
complex predictors, pmight depend on other (public) parameters as
well. If SN (0) is the time of the start of theN -th epoch, subsequent
event i in epoch N is predicted to occur at time SN (i):

SN (i) = max(inpi, SN (i− 1)) + p(N)

The two terms in the above expression correspond to the pre-
dicted start of the computation for event i and the predicted amount
of time it takes to compute the output, respectively. To predict the
start of computation for event i, we take the later of two times: the
time input i is available, and the time event i− 1 is delivered.

3.2 Multiple input and output channels
Now let us consider mitigation on multiple channels, where re-

quests on different channels may be handled in parallel.



There are at least two reasonable concurrency models. The first
model assumes that every request type has an associated process
and that processes handling requests of one type do not respond to
requests of other types. The second model assumes a shared pool
of worker processes that can handle requests of any type as they
become available.

In either model, the mitigator is permitted to use some informa-
tion about which channel an input request arrives on and about the
content of the request. This information about the channel and the
request is considered abstractly to be the request type of the re-
quest. There is a finite set of request types numbered 1, . . . , R.
Requests coming at time inp with request type r are represented
as a pair (inp, r). A request history is a sequence of requests
(inp1, r1) . . . (inpi, ri) . . . , where inpi is the time of request i,
and ri is the type of the request: 1 ≤ ri ≤ R.

The mitigator makes predictions separately for each request type;
however, with multiple request types, an epoch is a period of time
during which predictions are met for all request types. A mispre-
diction for one request type causes an epoch transition for the mit-
igator, and may change predictions for every request type. We de-
note the prediction for computation when mitigator is in state St
on request type r by a function p(St, r). When the state consists
only of the number of epochs (St = N ), we simply write p(N, r).

3.2.1 Individual processes per request type
In the case where each request type has its own individual pro-

cess, the prediction for output event i is

SN (i) = max(inpi, SN (j)) + p(N, ri)

where j is the index of the previous request of type ri; that is,
j = max{j′ | j′ < i ∧ ri = rj′}. Hence SN (j) is the prediction
of the previous request of type ri. We define SN (j) to be zero
when there are no previous requests of the same type.

Example. Consider a simple system with two request typesA and
B (for clarity we index request types with letters), and consider a
mitigator with these prediction functions p(N, r) for N = 1:

N p(N,A) p(N,B)
1 10 100

Assume the following input history: (2, A), (4, B), (6, A), and
(30, B). That is, two inputs of type A arrive at times 2 and 6, and
two of type B arrive at times 4 and 30.

The inputs (2, A) and (4, B) are the first requests of the corre-
sponding types. The predictions for these requests are

S1(1) = max(2, 0) + 10 = 12
S1(2) = max(4, 0) + 100 = 104

For the next request of type A, the prediction is

S1(3) = max(6, 12) + 10 = 22

This prediction takes into account the amount of time it would take
for the process for request type A to finish processing the last input
and then to delay the message for p(1, A). Similarly, the predicted
output time for the fourth request (30, B) is

S1(4) = max(30, 104) + 100 = 204

3.2.2 Shared worker pool
For a shared pool of worker processes, predictions must be de-

rived more carefully. Suppose the system has at least n worker
processes that handle input requests. To compute a prediction for
input request i that arrives at time inpi with type ri, the mitigator
needs to know two terms: when the handling of that request will

start, and an estimate of how long it takes to complete the request.
We assume that the completion estimate is given by p(N, r) and fo-
cus instead on the first term. The main challenge is to predict when
a worker will be available to process a request. For this we intro-
duce a notion of worker predictions. Intuitively, worker predictions
are a data structure internal to the mitigator that allows it to predict
when different requests will be picked up by worker processes.

Concretely, worker predictions are n sets W1, . . . ,Wn in which
every Wm contains pairs of the form (i, q). When (i, q) ∈ Wm, it
means request i is predicted to be delivered at time q by worker m.
Therefore, a given index i appears in at most one of the sets Wm.
The function avail(W ) predicts when a worker described by setW
will be available, by choosing the time when the worker should
deliver its last message.

avail(W ) ,

{
max{q | (i, q) ∈W} if W 6= ∅
0 otherwise

We describe next the algorithm for computing worker predictions.

Initialization. In the initial state of worker predictions, all sets
Wm (for 1 ≤ m ≤ n) are empty.

Prediction. Given an event i with input time inpi and request
type ri, the prediction SN (i) is computed as follows:

1. The earliest available worker j is predicted to handle request i.
Therefore, we find j such that avail(Wj) = min1≤m≤n{avail(Wm)}

2. Since worker j is assumed to handle request i, we make the
following prediction q for the i-th output:

q = max(inpi, avail(Wj)) + p(N, ri)

The prediction for SN is SN (i) = q.
3. Finally, worker predictions are updated with prediction (i, q):

Wj := Wj ∪ {(i, q)}

Misprediction. When a misprediction occurs, the mitigator re-
sets the state of worker predictions. Consider a misprediction at
time τN , which defines the start time of epoch N . We reset the
state of worker predictions as follows:

1. For every worker m, we find the earliest undelivered message
i′ that has been received before the misprediction:

i′ = min{i | (i, q) ∈Wm ∧ inpi < τN ≤ q}

2. If such i′ cannot be found, that is, the set in the previous equa-
tion is empty, we set Wm to ∅. Otherwise, we let q′ = τN +
p(N, ri′) and set Wm = {(i′, q′)}.

3. Note that the above step resets the state of each Wm in the
worker predictions. Using these reinitialized states, we can com-
pute predictions for the unhandled requests, i.e., all requests j with
predicted time q such that q > τN according to the steps 1) and 2)
described in Prediction.

An example using shared worker pool is presented in the Ap-
pendix.

4. Leakage analysis
As in [14], we can use a combinatorial analysis to bound how

much information leaks via predictive mitigation in interactive sys-
tems. One difference is that we take into account the interactive na-
ture of our model and derive bounds based on the number of input
requests and the elapsed time. To conservatively estimate leakage
we bound the number of possible timing variations that an adver-
sary can observe, as a function of the running time T and the length
of the input history M . Per Section 2.3, the leakage is at most the
log of the number of possible observations.



We show that a leakage bound of O(log T × logM) can be at-
tained, with a constant factor that depends on the choice of penalty
policy. When there is a worst-case execution time for every request,
a tighter bound of O(logM) can be derived.

4.1 Bounding the number of variations
To bound the number of possible timing variations, we need to

know three values: (1) the number of timing variations within each
epoch, (2) the number of variations introduced by schedule selector,
and (3) the number of epochs.

Let us consider the number of variations within each epoch. Be-
cause messages within a single epoch are delivered according to
predictions, the only source of variations within an individual epoch
is whether there is a misprediction, and if so, when the mispredic-
tion occurs. This can be specified by the length of the epoch. When
the mitigator has received at most M messages, the length of any
single epoch can be at most M + 1.

When the mitigator transitions from epoch N to epoch N + 1,
it chooses the schedule for the next epoch. Since the predictor can
rely on public information, the “schedule” is actually an algorithm
parameterized by public inputs. However, this algorithm may be
chosen based on non-public inputs, in which case the choice of
schedule may convey additional information to the adversary. Fol-
lowing [14], we denote by ΛN the number of possible schedules
when transitioning between epochs N and N + 1. Its value de-
pends on the details of the schedule selector. For simple mitigation
schemes, where the choice of the next schedule does not depend on
secrets, we have ΛN = 1. For adaptive mitigation [14], where the
choice of schedule depends on internal state such as the size of the
mitigator’s message buffer, ΛN may be greater than one.

Consider a mitigator that at time T has received at most M re-
quests and reached at most N epochs. The number of possible
timing variations of such a mitigator is at most

(M + 1)N · Λ1 . . .ΛN

Measured in bits, the corresponding bound on leakage is the loga-
rithm of the number of variations:

N · log(M + 1) +

N∑
i=1

log Λi

Note that for the simple doubling scheme, because Λi = 1, we also
have

∑N
i=1 log Λi = 0.

We can enforce an arbitrary enforcing bound on leakage. Denote
by B(T,M) the amount of information permitted to be leaked by
the mitigator. Enforcing bound B(T,M) is satisfied if the mitiga-
tor ensures this inequality holds:

N · log(M + 1) +

N∑
i=1

log Λi ≤ B(T,M)

This equation requires a relationship between the number of epochs,
the elapsed time, and the number of received messages. The exact
nature of this relationship is determined by penalty policies.

4.2 Penalty policies
Recall that the function p(St, r) predicts a bound on computa-

tion time for request type r in state St. The intuition is that the
more mispredictions have happened in the past (as recorded in St),
the larger is the value of p(St, r). The computation is penalized by
delivering its response later.

Designing a penalty policy function opens up a space of possibil-
ities. The question is how mispredictions on different request types
are interconnected—for example, whether a particular request type

should be penalized for mispredictions on other request types, and
if so, then how much.

On one side of the spectrum, we can use a global penalty pol-
icy that penalizes all request types when a misprediction occurs. If
all request types are penalized, it becomes harder to trigger mis-
predictions on any of them in future. Therefore, this policy pro-
vides a tight bound on N . Intuitively, an adversary gains no ad-
ditional power to leak information by switching between request
types. However, performance of all request types is hurt by mis-
predictions on any request type.

On the other end of the spectrum is a local penalty policy in
which request types are not penalized by mispredictions on other
types. This improves performance but offers weaker bounds on
leakage. To see this, assume that the number of transitions a single
request type can make isN . Since penalties are not shared between
request types, with R types, as many as R×N mispredictions can
occur. Timing leakage might be high if R is large; intuitively, the
adversary can attack each request type independently.

Aiming for more control of the tradeoff between security and
performance, we explore penalty policies that fill in the space be-
tween the global and local penalty policies. The key insight is that
the request types with few mispredictions contribute little to total
leakage, so they should share little penalty. This insight brings an
l-level grace period policy. In a l-level grace period policy, request
type r is only penalized by other types when the number mispre-
dictions on r is greater than l.

For more complex penalty policies, leakage analysis becomes
more challenging. In Section 4.4, we present an efficient and pre-
cise way of bounding N for some penalty policies.

4.3 Generalized penalty policies
Let us refine the state St to record the number of mispredictions

for each request type. If mr denotes the number of mispredictions
on request type r, the mitigator state contains a vector of mispre-
dictions counts ~m = m1, . . . ,mR. Initially all mr are zero. When
a misprediction happens on request type r, vector entry mr is in-
creased by one. In the following, we assume St = ~m, and write
the penalty function as p(~m, r).

Recall that during an epoch, predictions for all types are met.
Given a vector of mispredictions ~m, the number of epochs N is
simply N = 1 +

∑R
i=1mi. Thus, the problem of bounding N is

the same as bounding the sum
∑R

i=1mi.
For convenience, let us focus on a family of penalty functions p

that are a composition of three functions:

p(~m, r) = q(r)× (φ ◦ idx)(~m, r)

Here function φ(n) is a baseline penalty function, which given a
penalty index n returns the prediction for n. The penalty index
represents how severely this request type is penalized. It is com-
puted by function idx(~m, r), which returns the value of the index
in the current state ~m for request type r. Finally, q(r) returns an
initial penalty for request type r, and allows us to model different
initial estimates of how long it takes to respond to the request of
type r. For instance, if one knows that request type r1 needs at
least one second, and request type r2 needs at least 100 seconds,
then one can set q(r1) = 1, q(r2) = 100.

Examples. For penalty policies based on fast doubling, we set
φ(n) = 2n, and q(r) = q0 for all r with some initial quantum
q0. To use the global penalty policy, idx can be set to idx(~m, r) =∑R

i=1mi. To use the local penalty policy, idx is chosen as idx(~m, r) =
mr . For an l-level grace period policy, we define idx to depend on



the parameter l:

idx(~m, r) =

{
mr if mr ≤ l∑R

i=1mi otherwise

4.4 Generalized leakage analysis
As discussed earlier, different penalty functions yield different

bounds on N . While it is possible to analyze such bounds for spe-
cific penalty policies, in general it is hard to bound leakage for more
complex penalty policies.

This section describes a precise method for deriving such bounds
for several classes of penalty policies. We transform the problem
of finding a bound on the number of epochs N into an optimiza-
tion problem with R constraints, where R is the number of request
types. These constraints can be nonlinear in general, but all consid-
ered classes of penalty functions can be solved in constant time.

We focus on penalty functions where p(~m, r) is monotonic. Be-
cause monotonicity is natural for a “penalty”, this requirement does
not really constrain the generality of the analysis.

State validity. We write ~0 for the initial state ~0 in which no
mispredictions have happened. At the core of our analysis are two
notions: state reachability and state validity. Informally, a state ~m
is reachable at time T if there is a sequence of mispredictions that,
starting from ~0, lead to ~m by time T . To bound the number of
possible epochs N at time T , it is sufficient to explore the set of all
reachable states, looking for ~m in which 1 +

∑
mi (and therefore

N ) is maximized.
Enumerating all reachable states may be infeasible. In particu-

lar, an exact enumeration requires detailed assumptions about the
thread model presented in Section 3.2. Instead, we overapproxi-
mate the set of reachable states for efficient searching of the result-
ing larger space.

For this, we define the notion of state validity at time T . State
validity at time T is similar to reachability at time T , except that we
focus only on the predicted time to respond to a request, ignoring
the time needed to execute earlier requests.

We first introduce the notion of a valid successor:

DEFINITION 1 (VALID SUCCESSOR). A state ~m′ is a valid
successor of type j (1 ≤ j ≤ R) for state ~m when m′j = mj + 1
and m′i = mi for i 6= j.

For example, with three different request types (R = 3), the state
(0, 0, 1) is a valid successor of type 3 for state ~0.

We can then define state validity:

DEFINITION 2 (STATE VALIDITY FOR TIME T ). For penalty
function p(~m, r), a state ~m is a valid state for time T if there exists
a sequence of request types j1, . . . jn−1, jn, such that, if m0 = ~0,
it holds that for all i, 1 ≤ i ≤ n we have

• ~mi is valid successor of type ji for state ~mi−1.

• p(~mi−1, rji) ≤ T
• ~mn = ~m

The second condition approximates whether the state ~mi−1 can
make one more transition: if execution time is predicted to exceed
T , no more transitions are possible.

Example. Consider the simple case of one request type and time
6 with prediction function p(~m, r) = 2mr .

State ~m = (3) is a valid state for time 6. Consider the request
type sequence 1, 1, 1. We have ~m0 = ~0. Since ~m1 is a valid
successor of type 1 for state ~m0, we have ~m1 = (1). Similarly, we

have ~m2 = (2) and ~m3 = (3). It is easy to check that p(~m0) =
1 ≤ 6, p(~m1) = 2 ≤ 6 and p(~m2) = 4 ≤ 6. Since ~m3 = ~m, ~m is
valid by definition.

However, state ~m′ = (4) is not valid. Otherwise, since there
is only one request type in this example, jn must be 1. Therefore,
~mn−1 must be (3) because ~mn is a valid successor of type 1 for
~mn−1. However, p(~mn−1) = 8 > 6. This contracts the definition
of validity.

4.4.1 Transforming to an optimization problem
In this part, we show how to get the maximal

∑R
i=1mi among all

valid states when prediction function p(~m, r) is monotonic. First,
we show a useful lemma, proved in the appendix.

LEMMA 1. Assume p(~m, r) is monotonic. If ~m is a valid suc-
cessor of some type j for ~m′ such that p(~m′, j) ≤ T , then

~m = (m1, . . . ,mR) is valid for T ⇐⇒
~m′′ = (m1, . . . ,mj−1, 0,mj+1, . . . ,mR) is valid for T

Lemma 1 allows us to describe valid states by R constraints. To
see this, first observe that because ~m is valid for T , there are some
j1 and ~m′ such that ~m is a valid successor of ~m′ of type j1. By
Definition 1, p(~m′, j1) ≤ T . This is our first constraint on the
space of valid states.

By Lemma 1, the validity of ~m for T implies the validity of
(m1, ...,mj1−1, 0, . . . ,mR) for T . Repeating the previous step,
there is some j2 6= j1 and ~m′′ where (m1, ...,mj1−1, 0, . . . ,mR)
is a valid successor of ~m′′ of type j2; this gives us the second con-
straint, p(~m′′, j2) ≤ T . Proceeding as above, we obtain R con-
straints such that ~m is valid iff all constraints are satisfied.

Based on the properties of p, our analysis proceeds as follows.
We present two different classes of p in the order of difficulty of
analyzing them, starting from the easiest.

Symmetric predictions. We first look at prediction policies in
which all request types are penalized symmetrically:

1. for all i, j, such that 1 ≤ i, j ≤ R it holds that p(m1, . . . ,mi,
. . . ,mj , . . .mR, i) = p(m1, . . . ,mj , . . . ,mi, . . .mR, j).

2. for all i, j, k, such that 1 ≤ i, j, k ≤ R, where i 6= k, and
j 6= k it holds that p(m1, . . . ,mi, . . .mj , . . .mR, k) =
p(m1, . . . ,mj , . . .mi, . . .mR, k).

These properties allow us to reorder the request types in R con-
straints that we have obtained earlier. For example, the first of the
obtained constraints can be rewritten as p((mj1 − 1, . . . ,mR), 1)
≤ T. Moreover, this allows us to rename the variables in the con-
straints without loss of generality:

p((m1 − 1,m2, . . . ,mR), 1) ≤ T
p((0,m2 − 1, . . . ,mR), 2) ≤ T
. . .

p((0, 0, . . . ,mR − 1), R) ≤ T

Thus, bounding N is equivalent to finding the maximum sum∑R
i=1mi satisfying all the conditions.

Examples. It is easy to verify that starting with same initial quan-
tum, global, local, and l-level grace period policies penalize all re-
quest types symmetrically. We proceed with the analysis of these
policies below.

1. Consider the global penalty function with fast doubling and
the starting quantum q0 = 1. The j-th constraint in the above
system has form

2(
∑R

i=j mi−1) ≤ T



Here, N = 1 +
∑R

i=1mi ≤ log T + 2. This is very close to the
bound log(T + 1) + 1 given in [14].3

Using the leakage bound derived in Section 4.4, we obtain that
for global penalty policy, when the mitigator runs for at most time
T the leakage is bounded by function B(T,M) where

B(T,M) = (log T + 2) · log(M + 1)

2. Now consider the local penalty policy with the same penalty
scheme and initial quantum. We have R constraints of the form:

2mi−1 ≤ T, 1 ≤ i ≤ R

It is easy to derive N ≤ R · (log T + 1) + 1.
Using this bound for N , we obtain that when the mitigator runs

for at most time T , the leakage is bounded by functionB(T,M,R)
such that

B(T,M,R) = (R · (log T + 1) + 1) · log(M + 1)

3. We revisit the l-level grace period policy last. In this case, the
j-th constraint can be split into two cases:{

mj − 1 ≤ log T when mj − 1 ≤ l∑R
i=j+1mi − 1 ≤ log T when mj − 1 > l

In general, l is ordinarily smaller than log T , so N is maximized
when mi = l + 1, 1 ≤ i ≤ R − 1 and mR = blog T c+ 1. Thus,
N ≤ (R− 1) · (l + 1) + log T + 2.

Using this bound for N we obtain than when the mitigator runs
for at most time T the leakage is bounded by functionB(T,M,R, l)
such that

B(T,M,R, l) = log(M + 1) · ((R− 1) · (l + 1) + log T + 2)

Non-symmetric predictions. For other types of penalty func-
tions, we can still try to partition request types into subsets such
in each subset, request types are penalized symmetrically. We then
generate constraints for validity of subsets.

More formally, we say a vector of mispredictions ~m′ is a sub-
vector of ~m if and only if m′i = 0 ∨m′i = mi, 1 ≤ i ≤ R. A set
of vectors ~m1, . . . , ~mk is a partition of ~m if all vectors are subvec-
tors of ~m and for all mi, there is one and only one ~mj such that
mj

i = mi.
The following lemma shows that the condition that ~m is valid is

stronger than the validity of all subvectors. Thus, the constraints on
vectors in a partition overapproximates that on the validity of ~m.

LEMMA 2. When p(~m, r) is monotonic, ~m is valid at time T
=⇒ any subvector of ~m is valid at time T .

Since there are R non-zero mispredictions among all vectors in the
partition, this estimation still gives R constraints.

4.5 Security vs. performance
As discussed informally earlier, the global penalty policy en-

forces the best leakage bound but has bad performance; the local
penalty policy has the best performance but more leakage. We ex-
plore this trade-off between security and performance through sim-
ulations.

Simulation setup. We simulated a set of interactive system ser-
vices whose distribution of execution time have various means and

3Though [14] does not consider request types, the penalty policies
considered there are effectively global penalty policies.
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Figure 3: Performance vs. security

variance. The mean is used for the initial penalty. The fast doubling
scheme is used, so the prediction function is

p(~m, r) = q(r)× 2idx(~m,r)

where q(r) is the mean time of simulated type r. The form of
idx(~m, r) is defined by penalty policies.

To see the performance for request with different variance, we
simulated both regular types and irregular types. For regular types,
the simulated execution time follows Poisson distribution with dif-
ferent means since page view requests to a web page can be mod-
eled as a Poisson process; for irregular types, execution time fol-
lows a perturbed normal distribution which avoids negative execu-
tion time. The standard deviation is slightly smaller than the mean
multiplied by a factor ranging from 23 to 27, generating around 3
to 7 mispredictions.

Result. The x-axis in Figure 3 shows the bound on number of
epochs N and the y-axis shows the normalized slowdown of all
simulated request types. All values shown are normalized so that
for slowdown, the local policy has value 1 and for the number of
epochs, the global policy has value 1.

Results when standard deviation of irregular types has a factor of
23 and 27 are shown in the figure, which demonstrates the impact of
execution-time variation on performance. Number on lines denotes
grace-period level.

The results confirm the intuition that the global penalty policy
has the best security but bad performance, and the local policy has
the best performance. However, we can see the l-level grace period
policies have considerably fewer epochs N , yet performance sim-
ilar to that of the local policy when l is larger than mri for most
types.

When the variance of execution time increases, small grace-period
level (l = 3, 4) can bring slowdown that is orders of magnitude
higher than in the global case. The reason is that each irregular
request type can trigger l mispredictions. Once misprediction of
a request type is larger than l, idx(~m, r) returns a large number.
However using a larger grace-period level (l = 5) could restore
performance at the cost of more leakage.

Penalty policies with other forms are possible to provide more
options between the trade-off of security and performances. We
leave a more comprehensive analysis of more penalty policies as
future work.

4.6 Leakage with a worst-case execution time
In the analysis above, no assumption is made about execution

time for each request type. The adversary can delay responses for
an arbitrarily long time to covertly convey more information.

However, for some specific platforms, such as real-time sys-
tems and web applications with a timeout setting, we can assume a



S M1

M2

Figure 4: Parallel composition of mitigators

S M S'  M'
O1 O2

Figure 5: Sequential composition of mitigators

worst-case execution time Tw. Given this constraint, we can derive
a tighter leakage bound.

The analysis works similarly to that in Section 4.3, but instead
of using the conservative constraint p(~mi−1, rji) ≤ T as in Defi-
nition 2, worst-case execution time provides a tighter estimation:

p(~mi−1, rji) ≤ Tw

Compared with bounding running time T , this condition more
precisely approximates whether the state ~mi−1 can make one more
misprediction to ~mi. The reason is that whenever p(~mi−1, rji)
> Tw, the state ~mi−1 cannot have another misprediction because
execution is bounded by Tw. Therefore, we can reuse the bound on
the number of epochs in Section 4.3 by replacing T with Tw.

For example, total leakage with the assumption of worst-case
execution time Tw for the global penalty policy is bounded by

B(T,M) = (log Tw + 2) · log(M + 1)

This logarithmic bound is asymptotically the same as that achieved
by the less general bucketing scheme proposed by Köpf et al. [12]
for cryptographic timing channels.

For the l-grace-period penalty policy we can perform a similar
analysis to derive a bound on leakage:

B(T,M,R, l) = log(M + 1) · ((R− 1) · (l + 1) + log Tw + 2)

5. Composing mitigators
If timing mitigation is used, we can expect large systems to be

built by composing mitigated subsystems. Askarov et al. [14] show
empirically that composing mitigators sequentially performs well,
which makes sense because mitigated output has more predictable
timing. However, the prior work did not analyze leakage.

We analyze composed mitigators by considering the leakage of
two gadgets: two mitigators connected either in parallel or sequen-
tially (Figures 4 and 5). More complex systems with mitigated sub-
systems can be analyzed by decomposing them into these gadgets.

Parallel composition. Figure 4 is an example of parallel compo-
sition of mitigators, in which requests received by the system are
handled by two independent mitigators. The bound on the leak-
age of the parallel composition is no greater than the sum of the
bounds of the independent mitigators. To see this, denote by P
the total number of variations of the parallel composition, and de-
note by V1 and V2 the number of timing variations of the first and
second mitigators, respectively. We know P ≤ V1 · V2; conse-
quently, the total leakage of parallel composition logP is bounded
by log V1 +log V2. The same argument generalizes to nmitigators
in parallel.

Sequential composition. Suppose we have a security-critical
component, such as an encryption function, and leakage from this
component is controlled by a mitigator that guarantees a tight bound,
say at most 10 bits of the encryption key. We can show that once
mitigated, leakage of the encryption key can never exceed 10 bits,
no matter how output of that component is used in the system. This
is true for both Shannon-entropy and min-entropy definitions of
leakage.

Consider sequential composition of two systems as depicted in
Figure 5. Suppose that the secrets in the first system are S, and
that the outputs of the first and the second mitigators are O1 and
O2 respectively. We consider how much the output of each of the
mitigators leaks about S.

As discussed in Section 2.3, the leakage of the first mitigator
using mutual information is I(S;O1) and the leakage of the second
is I(S;O2). Then we can show that the second mitigator leaks no
more information about S1 than the first does. We formalize this in
the following lemma.

LEMMA 3. I(S;O1) ≥ I(S;O2)

A similar result holds for min-entropy leakage.

LEMMA 4. V (S|O1) ≥ V (S|O2)

Both of these lemmas are proved in the appendix.

Discussion. Parallel and sequential composition results enable de-
riving conservative bounds for networks of composed subsystems.
The bounds derived may be quite conservative in the case where
parallel mitigated systems have no secrets of their own to leak. If
the graph of subsystems contains cycles, it cannot be decomposed
into these two gadgets. We leave a more comprehensive analysis of
mitigator composition to future work.

6. Experiments
To evaluate the performance and information leakage of gener-

alized timing mitigation, we implemented mitigators for different
applications. The widely used Apache Tomcat web container was
modified to mitigate a local hosted application. We also developed
a mitigating web proxy to estimate the overhead of mitigating real-
world applications—a non-trivial homepage that results in 49 dif-
ferent requests and a HTTPS webmail service that requires stronger
security.

We explored how to tune this general mechanism for different
security and performance requirements. The results show that mit-
igation does slow down applications to some extent; we suggest the
slowdown is acceptable for some applications.

6.1 Mitigator design and its limitations
We define the system boundary in the following way. Inputs en-

ter the system at the point when Tomcat dispatches requests to the
servlet or JSP code. Results returned from this code are considered
outputs. Thus, all timing leakage arising during the processing of
the servlet and the JSP files is mitigated.

This implementation of mitigation has limitations. Because of
shared hardware and operating-system resources such as filesys-
tem caches, memory caches, buses, and the network, the time re-
quired to deliver an application response may convey information
about sensitive application data. Our current implementation strat-
egy, chosen for ease of implementation, prevents fully addressing
these timing channels where they affect timing outside the system
boundary as defined.

To completely mitigate timing channels, mitigation should be in-
tegrated at the operating system and hardware levels. For example,



the TCP/IP stack might be extended to support delaying packets
until a mitigator-specified time. With such an extension, all timing
channels, including low-level interactions via hardware caches and
bus contention, would be fully mitigated. Although we leave the
design of such a mechanism to future work, we see no reason why
a more complete mitigation mechanism would significantly change
the performance and security results reported here.

6.2 Mitigator implementation
We implemented the mitigator as a Java library containing 201

lines of Java code, excluding comments and the configuration file.
This library provides two functions:

Mitigator startMitigation (String requestType);
void endMitigation (Mitigator miti);

The function startMitigation should be invoked when an
input is available to the system, passing an application-specific re-
quest type identifier. The function endMitigation is used by
the application when an output is ready, and the mitigator for the re-
lated input is required for this interface. Calling endMitigation
blocks the current thread until the time predicted by the mitigator.

Instead of optimizing for specific applications, we heuristically
choose the following parameters for all experiments: 1. Initial pen-
alty: the initial penalty for all request types is 50 ms, a delay short
enough to be unnoticeable to the user. 2. Penalty policy: we use the
5-level grace period policy since it provides good tradeoff between
security and performance as shown in 4.5. 3. Penalty function:
most requests are returned within 250 ms, and the distribution is
quite even. We evenly divide the first 5 epochs to make predictions
more precise: 50 ms, 100 ms, 150 ms, 200 ms, 250 ms, doubling
progressively thereafter. 4. Worst-case execution time Tw: We as-
sume worst-case execution time for requests Tw to be 300 seconds.
This is consistent with Firefox browser version 3.6.12, which uses
this value as a default timeout parameter.

6.3 Leakage revisited
Applying the experiment settings into the formula from Sec-

tion 4.6 withR request types, the following leakage bound obtains:

((R− 1) · (l + 1) + (log Tw + 2)) · log(M + 1)

=((R− 1) · 6 + (log 300000 + 2)) · log(M + 1)

≤(6 ·R+ 15) · log(M + 1)

whereM is the number of inputs using the simple doubling scheme.
Intuitively, introducing more request types helps make the pre-

diction more precise for each request, because processing time varies
for different kinds of requests. However, the leakage bound is pro-
portional to the number of request types. So it is important to find
the right tradeoff between latency and security.

6.4 Latency and throughput
To enable the mitigation of unmodified web applications, we

modified the open source Java Servlet and JavaServer Pages con-
tainer Tomcat 6.0.29 using the mitigation library.

Experiment setup. Mitigating Tomcat requires only three lines
of Java code: one line generating a request type id from the HTTP
request, one line to start the mitigation, and another line to end
mitigation after the servlet is finished. We deployed a JSP wiki
application, JSPWiki4, in the mitigating Tomcat server to evaluate
how mitigation affects both latency and throughput. Measurements
were made using the Apache HTTP server benchmarking tool ab.5

4http://www.jspwiki.org
5http://httpd.apache.org/docs/2.0/programs/ab.html
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Figure 7: Wiki throughput with and without mitigation

Since we focus on the latency and throughput overhead of request-
ing the main page of the wiki application, the URI is used as the
request type identifier.

Results. We measured the latency and throughput of the main
page of JSPWiki for both the mitigated and unmitigated versions.
We used a range of different concurrency settings in ab, controlling
the number of multiple requests to perform at a time. The size of the
Tomcat thread pool is 200 threads in the current implementation.
For each setting, we measured the throughput for 5 minutes. The
results are shown in Figure 6 and Figure 7.

When the concurrency level is 1—the sequential case—the un-
mitigated Wiki application has a latency around 11ms. Since the
initial penalty is selected to be 50ms in our experiments, the aver-
age mitigated latency rises to about 57ms: about 400% overhead.
This is simply an artifact of the choice of initial penalty.

As we increase the number of concurrent requests, the unmit-
igated application exhibits more latency, because concurrent re-
quests compete for limited resources. On the other hand, the mit-
igation system is predicting this delayed time, and we can see that
these predictions introduce less overhead: at most 90% after the
concurrency level of 50; an even smaller overhead is found for
higher concurrency levels.

The throughput with concurrency level 1 is much reduced from
the unmitigated case: only about 1/5 of the original throughput.
However, when the concurrency level reaches 50, throughput in-
creases significantly in both cases, and the mitigated version has
52.73% of the throughput of the unmitigated version. For higher
levels of concurrency, the throughput of the two versions is similar.

6.5 Real-world applications with proxy
We evaluated the latency overhead of predictive mitigation on

existing real-world web servers. To avoid the need to deploy pre-
dictive mitigation directly on production web servers, we intro-
duce a mitigating proxy between the client browser and the target
host. We modified an open source Java HTTP/HTTPS proxy, Lit-
tleProxy6, to use the mitigation library, adding about 70 LOC. We

6http://www.littleshoot.org/littleproxy/index.html
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Figure 8: Latency for an HTTP web page
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used it to evaluate latency with two remote web servers: a HTTP
web page and an HTTPS webmail service.

With mitigation again done entirely at user level, timing chan-
nels that arise outside the mitigation boundary cannot be mitigated.
The mitigation boundary is defined as follows: the mitigating proxy
treats requests from client browser as inputs, and forwards these
requests to the host. The response from the host is regarded as an
output in the black-box model.

The proxy mitigates both the response time of the server and the
round-trip time between the proxy and server. Only the first part
corresponds to real variation that would occur with a mitigating
web server. To estimate this part of latency overhead, we put the
proxy in a local network with the real host. Because we found mea-
sured little variation in this configuration, the results here should
estimate latency for real-world applications reasonably accurately.

6.5.1 HTTP web page
Unlike the previous stress test that requests only one URL, we

evaluated latency overhead using a non-trivial HTTP web page, a
university home page that causes 49 different requests to the server.
Multiple requests bring up the opportunity of tuning the tradeoff
between security and performance. Various ways to choose request
types were explored:

1. TYPE/HOST: all URLs residing on the same host are treated
as one request type, that is, they are predicted the same way.

2. HOST+URLTYPE: different requests on the same host are
predicted differently based on the URL type of the request. We
distinguish URL types based on the file types, such JPEG files, CSS
files and so on. Each of them corresponds to a different request
type.

3. TYPE/URL: individual URLs are predicted differently.
Figure 8 shows the latency of loading the whole page along with

the number of request types with these options. The results show
that in the most restrictive TYPE/HOST case, latency is almost
tripled compared to the unmitigated case. HOST+URLTYPE and
TYPE/URL options have similar latency results, with around 30%
latency overhead.

From the security point of view, the TYPE/HOST option only
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Figure 10: Latency overhead for HTTPS webmail service
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Figure 11: Leakage bound for HTTPS webmail service

results in two request types: one host is in the organization, and
the other one is google-analytics.com, used for the search
component in the main page. HOST+URLTYPE introduces 6 more
request types, while using the TYPE/URL option, there are as many
as 49 request types. The information leakage bounds for different
options are shown in Figure 9.

The HOST+URLTYPE choice provides a reasonable tradeoff: it
has roughly a 30% latency overhead, yet information leakage is
below 850 bits for 100,000 requests.

6.5.2 HTTPS webmail service
We also evaluate the latency with a webmail service based on

Windows Exchange Server. After the user passes Kerberos-based
authentication (Auth), he is redirected to the login page (Login) and
may then see the list of emails (List) or read a message (Email).

Request type selection. This application accesses sensitive data,
so we evaluate performance with the most restrictive scheme: one
request type per host. There are actually two hosts: one host is used
to serve only AuthPage.

Results. We measured the latency overhead of four representative
pages for this service. The number of different requests generated
by these pages ranges from 6 to 45. The results in Figure 10 show
that the latency overhead ranges from 2 times to 4 times for these
four pages; in the worst case, latency is still less than 1 second.
Also, this overhead can be reduced with different request type se-
lection options.

Figure 11 shows the leakage bound of this mitigated application.
The leakage is limited to about 300 bits after 100,000 requests and
grows slowly thereafter.

7. Related work
The most closely related work is that of Askarov et al. [14].

Comparisons to that work have been made throughout the paper;
at a high level, the generalized predictive mitigation scheme makes
possible the practical application of predictive mitigation to general
services. The simple predictive mitigator defined by Askarov et al.
is manifestly unsuitable to this task, as discussed in Section 3.1.



Köpf et al. [12, 13] introduced the mechanism of bucketing to
mitigate timing side channels in cryptographic operations, achiev-
ing asymptotically logarithmic bounds on information leakage but
with stronger assumptions than in this work. Their security analy-
ses rely on the timing behavior of the system agreeing with a pre-
viously measured distribution of times; therefore they implicitly
assume that the adversary does not control timing, and that there
is a worst-case execution time. The bucketing approach does not
achieve logarithmic bounds for general computation.

The NRL Pump [26] and its follow-ups, like Network Pump [27],
are also network service handling that handle requests. The Pump
work addresses timing channels arising from message acknowledg-
ments (which correspond to but are less general than outputs in this
work). Acknowledgment timing is stochastically modulated using
a moving average of past activity, and leakage in one window does
not affect later windows. Therefore the NRL/Network Pumps can
enforce only a linear leakage bound.

Much other work has studied timing channels at the network
level, exploring techniques such as adding random delays or pe-
riodic quantization of time (e.g., [24, 20]). For discussion of this
prior work, see [14]. Work on language-based security has also
addressed timing channels, especially for internal timing channels,
and this also is covered in [14].

8. Conclusion
Predictive mitigation as introduced earlier offered the possibility

of mitigating timing channels in general computations, but was im-
practical as a way to build real networked services. In this work, we
have both generalized and refined the original model of predictive
mitigation to apply to interactive systems. The experimental results
from the implementation of this generalized prediction mitigation
scheme suggest that it may be a practical way to mitigate timing
channels in a variety of networked services.
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APPENDIX
Example of shared worker pool
Reusing the settings from the example in Section 3.2.1, we have
four inputs: (2, A), (4, B), (6, A) and (30, B), and prediction
function p(1, A) = 10 and p(1, B) = 100. Suppose we have
two shared workers.

As described above, the worker predictions are both initialized to
be empty: W1 = ∅ and W2 = ∅. For the first input, both workers
are available; that is, avail(W1) = avail(W2) = 0 since W1 and
W2 are all empty sets now. We break the tie by selecting the worker
with smaller index, worker 1, and then we set the prediction for
input (2, A) as

S1(1) = max(2, 0) + 10 = 12

Finally, the worker prediction of worker 1 is updated to {(1, 12)}.
For the second input, avail(W1) = 12 and avail(W2) = 0.

Worker 2 is the earliest available worker. Similarly to the first input,
the prediction for the second output is S1(2) = max(4, 0)+100 =
104. The worker prediction of worker 2 is updated to {(2, 104)}.

Computation of the predicted worker becomes more interesting
for the third input (6, A). We have

avail(W1) = max{q | (i, q) ∈ {(1, 12)}} = 12
avail(W2) = max{q | (i, q) ∈ {(2, 104)}} = 104

The mitigator picks the worker with earliest availability, worker 1.
The third output is predicted at: S1(3) = max(6, 12) + 10 = 22,
and the prediction for worker 1 is updated to {(1, 12), (3, 22)}.

For the last input (30, B), the mitigator first computes the avail-
able times for both workers:

avail(W1) = max{q | (i, q) ∈ {(1, 12), (3, 22)}} = 22
avail(W2) = max{q | (i, q) ∈ {(2, 104)}} = 104

Based on these values, the mitigator picks worker 1 as the predicted
worker for the fourth input. The prediction for corresponding out-
put is S1(4) = max(30, 22) + 100 = 130, and the prediction of
worker 1 becomes {(1, 12), (3, 22),(4, 130)}.

Proof of Lemma 1
Proof. ⇐=: since ~m′′ is valid, there is sequence of request types
where all intermediate states satisfy the constraints. Further, we can
construct a sequence of request types from ~m′′ to ~m by appending
j to the previous sequence until ~mi = ~m. Since p(~m′, j) ≤ T and
p is monotonic, all new states corresponding to this sequence still
satisfy the constraints.

=⇒: by definition, there is a sequence of request types r1, . . . , rn
such that all intermediate states satisfy constraints. Moreover, there
must be a point i in this sequence such that ∀l < i, rl 6= j and
ri = j. Thus, the j-th element of ~mi−1 is 0.

Then, a new sequence of request types p1, . . . , pm exists such
that pl = rl, 0 ≤ l ≤ i − 1. For l ≥ i, if rl = j, skip this type.
Otherwise, add the same type to sequence ~p. By this construction,
two properties of states occurring with ~p are that the j-th element
is always 0, and that there is a corresponding state with sequence ~r
such that they only differ in the j-th element. We denote the final
states with request type sequence ~r, ~p as ~mr and ~mp respectively.
Since state ~mr satisfies p(~mr, rl) ≤ T , by monotonicity, corre-
sponding state ~mp also satisfies this condition. Since mr

n = ~m′′,
~m′′ is valid at T .

2

Proof of Lemma 2
Proof. By definition, there is a sequence of request types j1, . . . , jn
such that all conditions in Definition 2 are satisfied. For any sub-

vector of ~m, say ~m′, we can take a projection of the sequence so
that only the request types nonzero in the subvector are kept.

By monotonicity, it is easy to check that all conditions hold in
the definition. Moreover, ~mn = ~m′. So ~m′ is valid by definition.

2

Proof of Lemmas 3 and 4
We can view the outputs O1 and O2 as discrete random variables.
Since the second service and its mitigator do not share secret S, the
conditional distribution ofO2 depends only onO1 and is condition-
ally independent of S (in other words, random variables S,O1, O2

form a Markov chain). Denoting the probability mass function of a
discrete random variableX as P (X), the joint distribution of these
three random variables has probability mass functionP (s, o1, o2) =
P (s)P (o1|s)P (o2|o1). The marginal distribution P (o2, s) is∑

o1∈O1
P (s, o1, o2), and for any o1, we have

∑
o2∈O2

P (o2|o1) =
1.

Proof of Lemma 3.

Proof. The proof follows from the standard data-processing in-
equality [28] and the symmetry of mutual information:

I(S;O2) + I(S;O1|O2) = I(S;O1, O2)

= I(S;O1) + I(S;O2|O1)

Note that S and O2 are conditionally independent given O1, since
the second mitigator produces outputs based on only the output of
the first mitigator M , public inputs, and secrets other than S. Thus
I(S;O2|O1) = 0. Replacing this term with zero in the above
equation, we get

I(S;O2) + I(S;O1|O2) = I(S;O1)

Also, we know that I(S;O1|O2) ≥ 0, so we have

I(S;O1) ≥ I(S;O2)

2

Proof of Lemma 4. As discussed in Section 2.3, min-entropy
channel capacity is defined as the maximal value of log V (S|O)

V (S)

among all distributions on S. So it suffices to show V (S|O1) =
V (S|O2) for any distribution on S.

V (S|O2) =
∑

o2∈O2

max
s∈S

P (s)P (o2|s)

=
∑

o2∈O2

max
s∈S

∑
o1∈O1

P (s, o1, o2)

=
∑

o2∈O2

max
s∈S

∑
o1∈O1

P (s)P (o1|s)P (o2|o1)

≤
∑

o2∈O2

∑
o1∈O1

P (o2|o1) max
s∈S

P (s)P (o1|s)

=
∑

o1∈O1

max
s∈S

(P (s)P (o1|s))
∑

o2∈O2

P (o2|o1)

=
∑

o1∈O1

max
s∈S

P (s)P (o1|s)

= V (S|O1)


